Περιοδικά / Journals

[1] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “Fast and stable algorithm  for computing the principal square root of a complex matrix”,  Neural,  Parallel   and Scientific Computations, vol. 1, pp. 467-476, 1993.

[2] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “New doubling algorithm for the discrete periodic Riccati equation”, Applied Mathematics and Computation, vol. 60, no. 2-3, pp.   265-283, 1994.

[3] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “A new computationally effective algorithm for solving the discrete Riccati equation”, Journal of Mathematical Analysis and   Applications, vol. 186, no. 3, pp. 868-895, 1994.

[4] Lainiotis D. G., Assimakis N. D., Katsikas S. K., “Fast and numerically robust recursive algorithms for solving the discrete time Riccati equation: The case of nonsingular plant noise covariance matrix”, Neural, Parallel and Scientific Computations, vol. 3, no. 4, pp. 565-584, 1995.

[5] Assimakis N. D., “Optimal distributed Κalman filter”, Nonlinear Analysis, vol. 47/8, pp. 5367-5378, 2001 (special issue).

[6] Assimakis N., Roulis S., Lainiotis D., “Recursive solutions of the discrete time Riccati equation”, Neural, Parallel and Scientific Computations, vol. 11, pp. 343-350, 2003.

[7] Assimakis N. D., Psarakis E. Z., Lainiotis D. G., “Steady state Kalman filter: A new approach”, Neural, Parallel and Scientific Computations, vol. 11, pp. 485-490, 2003.

[8] Assimakis N., Roulis S., Lainiotis D., Triantafillidis M., “An interesting property of the doubling algorithm for solving the discrete time Riccati equation”, Nonlinear Studies, vol. 12, no. 4, pp. 337-343, 2005.

[9] Assimakis N. D., Roulis S., Lainiotis D. G., “Optimal distributed algorithms for the solution of the discrete time Riccati equation”, Nonlinear Studies, vol. 12, no. 4, pp. 381-390, 2005.

[10] Assimakis N., “A new algorithm for the steady state Kalman filter”, Neural, Parallel and Scientific Computations, vol. 14, no. 1, pp. 69-74, 2006.

[11] Kechriniotis A. I., Assimakis N. D., “Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), vol. 7, issue 3, art. 90, 2006.

[12] Kechriniotis A. I., Assimakis N. D., “On the inequality of the difference of two integral means and applications for pdfs”, Journal of Inequalities in Pure and Applied Mathematics (JIPAM), vol. 8, issue 1, art. 10, 2007.

[13] Assimakis N., Adam M., “Discrete time Kalman and Lainiotis filters comparison”, Int. Journal of Mathematical Analysis (IJMA), vol. 1, no. 13, pp. 635-659, 2007.

[14] Assimakis N., Kechriniotis A., Voliotis S., Tassis F., Kousteri M., “Analysis of the time invariant Kalman filter implementation via general Chandrasekhar algorithm”, International Journal of Signal and Imaging Systems Engineering (IJSISE), vol. 1, no. 1, pp. 51-57, 2008.

[15] Adam M., Assimakis N., Sanida F., “Algebraic solutions of the matrix equations X ATX-1A=Q and X-ATX-1A=Q”, International Journal of Algebra, vol. 2, no. 11, pp. 501-518, 2008.

[16] Assimakis N., Sanida F., Adam M., “Recursive solutions of the matrix equations X ATX-1A=Q and X-ATX-1A=Q”, Applied Mathematical Sciences, vol. 2, no. 38, pp. 1855-1872, 2008.

[17] Adam M., Assimakis N., “Periodic Kalman filter: Steady state from the beginning”, Journal of Mathematical Sciences: AdvancesandApplications, vol. 1, no. 3, pp. 505-520, 2008.

[18] Assimakis N., Adam M., “FIR implementation of the steady state Kalman filter”, International Journal of Signal and Imaging Systems Engineering (IJSISE), vol. 1, nos. 3/4, pp. 279-286, 2008.

[19] Assimakis N., Adam M., “Steady state Kalman filter for periodic models: A new approach”, International Journal of Contemporary Mathematical Sciences, vol. 4, no. 5, pp. 201-218, 2009.

[20] Assimakis N., “Optimal distributed Lainiotis filter”, Int. Journal of Math. Analysis, vol. 3, no. 22, pp. 1061-1080, 2009.

[21] Assimakis N., “Discrete time Riccati equation recursive multiple steps solutions”, Contemporary Engineering Sciences, vol. 2, no. 7, pp. 333-354, 2009.

[22] Assimakis N., Kotsos B., “A chaotic system controller”, Int. Journal of Math. Analysis, vol. 3, no. 29, pp. 1405-1411, 2009.

[23] Adam M., Assimakis N., Tziallas G., Sanida F., “Riccati equation solution method for the computation of the solutions of  X ATX-1A=Q and X-ATX-1A=Q”, The Open Applied Informatics Journal, vol. 3, pp. 22-33, 2009.

[24] Assimakis N., “Limiting properties of the doubling algorithm for solving the discrete time Riccati equation”, Contemporary Engineering Sciences , vol. 3, no. 1, pp. 17-23, 2010.

[25] Assimakis N., “Chandrasekhar type algorithms for the Riccati equation of Lainiotis filter”, Contemporary Engineering Sciences, vol. 3, no. 4, pp. 191-200, 2010.

[26] Assimakis N., Adam M., “A new author’s productivity index: p-index”,  Scientometrics, vol. 85, no. 2, pp. 415-427, DOI 10.1007/s11192-010-0255-z, 2010.

[27] Delibasis K., Kechriniotis A., Tsonos C., Assimakis N., “Automatic model-based tracing algorithm for vessel segmentation and diameter estimation”, Computer Methods and Programs in Biomedicine, vol. 100, pp. 108-122, 2010.

[28] Assimakis N, Adam M., “Lainiotis filter implementation via Chandrasekhar type algorithm”, Journal of Computations & Modelling, vol. 1, no. 1, pp. 115-130, 2011.

[29] Adam M., Assimakis N., Fotopoulou G., “On the Hermitian solutions of the matrix equation Xs A*X-sA=Q”, Journal of Applied Mathematics & Bioinformatics, vol. 1, no. 2, pp. 109-129, 2011.

[30] Assimakis N., Adam M., Douladiris A., “Information Filter and Kalman Filter Comparison: Selection of the Faster Filter”, International Journal of Information Engineering, vol. 2, no. 1, pp. 1-5, 2012.

[31] Assimakis N, Adam M., “On the convergence of the modified Riccati equation”, ISRN Signal Processing, doi:10.5402/2012/625897, 2012.

[32] Delibasis K., Kechriniotis A., Assimakis N., “New closed formula for the univariate Hermite interpolating polynomial of total degree and its application in medical image slice interpolation”, IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6294-6304, doi: 10.1109/TSP.2012.2217134, 2012.

[33] Assimakis N., Adam M., Koziri M., Voliotis S., Asimakis K., “Optimal decentralized Kalman filter and Lainiotis filter”, Digital Signal Processing, vol. 23, issue 1, pp. 442-452, doi: 10.1016/j.dsp.2012.08.005, 2013.

[34] Assimakis N, Adam M., Triantafillou C.,“Lainiotis filter, golden section and Fibonacci sequence”, Signal Processing, vol. 93, pp. 721-730, http://dx.doi.org/10.1016/j.sigpro.2012.09.014, 2013.

[35] Assimakis N., Adam M., “Modified Riccati equation emanating from Lainiotis filter”, International Journal of Information Engineering, vol. 3, iss.1, pp. 25-29, 2013.

[36] Assimakis N., Adam M., “Kalman Filter Riccati Equation for the Prediction, Estimation and Smoothing Error Covariance Matrices”, ISRN Computational Mathematics, vol. 13, Article ID 249594,  http://dx.doi.org/10.1155/2013/249594, 2013.

[37] Assimakis N., Adam M., “Global Systems for Mobile Position Tracking Using Kalman and Lainiotis Filters”, The Scientific World Journal,  vol. 2014, Article ID 130512, 8 pages, doi:10.1155/2014/130512, 2014.

[38] Adam M., Assimakis N., “k-step sum and m-step gap Fibonacci sequence”, ISRN Discrete Mathematics, vol. 2014, Article ID 374902, 7 pages, http://dx.doi.org/10.1155/2014/374902, 2014.

[39] Assimakis N., Adam M., “Iterative and algebraic algorithms for the computation of the steady state Kalman filter gain”, accepted to ISRN  Applied Mathematics, 2014.

[40] Assimakis N., Adam M., “Inversion Free Algorithms for Computing the Principal Square Root of a Matrix”, International Journal of Mathematics and Mathematical Sciences, Volume 2014, Article ID 613840, 8 pages, http://dx.doi.org/10.1155/2014/613840, 2014.

[41] Adam M., Assimakis N., “Nonrecursive solution for the discrete algebraic Riccati equation and X+A*X-1A=L”, Open Mathematics, pp. 51-63, 2015.

[42] Adam M., Assimakis N., Farina A., “Golden section, Fibonacci sequence and the time invariant Kalman and Lainiotis filters”, Applied Mathematics and Computation, vol. 250, pp. 817-831, 2015.

[43] Adam M., Assimakis N., “Mobile Position Tracking in Three Dimensions using Kalman and Lainiotis Filters”, The Open Mathematics Journal, vol. 8, pp. 1-6, 2015.

[44] Adam M., Assimakis N., “k-step Fibonacci sequence and Fibonacci matrices”, Journal of Discrete Mathematical Sciences & Cryptography, 2015.

[45] Assimakis N., Tziallas G., Anagnostopoulos I. and Polyzos A., “Tank level estimation using Kalman and Lainiotis filters”, Asian Journal of Mathematics and Computer Research, vol. 10, issue 1, pp. 19-38, 2016.

[46] Assimakis N., Tziallas G., Anagnostopoulos I. and Polyzos A., “Tank level prediction using Kalman filter”, Asian Journal of Mathematics and Computer Research, vol. 11, issue 4, pp. 251-271, 2016.

[47] Adam M., Assimakis N., Fazaeli E., Tziallas G., “On the solution of the quasi Riccati and Lyapunov equations”, Asian Journal of Mathematics and Computer Research, vol. 13, no 1, pp. 22-33, 2016.

[48] G. Koziri M., Loukopoulos T., Adam M. and Assimakis N., “Speedup of Kalman and Lainiotis filters for partitionable models”, International Journal of Advanced Computer Research, vol. 6, issue 26, pp. 160-166, 2016.

[49] Assimakis N., Tziallas G., Adam M., Polyzos A., Papanastasiou C., “Mobile position estimation and prediction using steady state Kalman filter”, International Journal of Computer Science and Information Technology Research, vol. 4, issue 3, pp: 261-272, 2016.